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(a) ERNet Registered Trajectories

(b) Comparison Results on D-FAUST

Figure 1. (a) Given a source object (center bunny) and a sequence of sparse or partial point clouds (purple bunnies), ERNet efficiently
and accurately predicts feed-forward registrations. The gradient texture on the center bunny corresponds to the colors of its vertex-wise
trajectories shown above. (b) ERNet achieves the lowest Average Trajectory Error in 3D (AT E3p) among all baselines on the D-FAUST

dataset while delivering over 4x speedup in FPS.

Abstract

Registering an object shape to a sequence of point clouds
undergoing non-rigid deformation is a long-standing chal-
lenge. The key difficulties stem from two factors: (i) the
presence of local minima due to the non-convexity of regis-
tration objectives, especially under noisy or partial inputs,
which hinders accurate and robust deformation estimation,
and (ii) error accumulation over long sequences, leading
to tracking failures. To address these challenges, we intro-
duce to adopt a scalable data-driven approach and propose
ERNet, an efficient feed-forward model trained on large de-
formation datasets. It is designed to handle noisy and partial
inputs while effectively leveraging temporal information for
accurate and consistent sequential registration. The key to
our design is predicting a sequence of deformation graphs
through a two-stage pipeline, which first estimates frame-
wise coarse graph nodes for robust initialization, before
refining their trajectories over time in a sliding-window fash-
ion. Extensive experiments show that our proposed approach
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(i) outperforms previous state of the art on both the Deform-
ingThings4D and D-FAUST datasets, and (ii) achieves more
than 4x speedup compared to the previous best, offering
significant efficiency improvement.

1. Introduction

As Carl Jung once said, “In all chaos there is a cosmos, in all
disorder a secret order.” Predicting structured motion repre-
sentation, more specifically 3D trajectories, within unordered
point sequences has always been a fundamental challenge in
computer vision and robotics, with wide applications among
dynamic reconstruction, scene understanding, robot manip-
ulation and more. In this work, we target on the problem
of sequential non-rigid registration, which aims to register a
source mesh of an object onto a sequence of observed point
clouds, often sparse or partial, resulting in dense trajectories
of the object over time. Traditional methods [4, 5] generally
formulate this task as an optimization problem that solves
point-wise transformations by minimizing the distance be-
tween source and target point clouds. While many follow-up
works [1, 7, 15, 33, 34] have introduced regularizers, such as



As-Rigid-As-Possible constraint [26, 33] and deformation
graph [1, 37], to improve the robustness of their optimization
process, they still easily get stuck in local optima due to the
non-convexity of the objective functions.

With the success of deep learning and neural networks,
researchers have been exploring the potentials of neural net-
works in solving this problem. One type of this research
leverages the functionality of neural network in represent-
ing deformations [3, 6, 14, 27, 36] to register point clouds
by optimizing neural deformation fields, partially alleviat-
ing the local optimal problem. However, because of their
optimization-based nature, they still struggle to generalize
to noisy or partial inputs. To address this, another line of
work [17, 18, 30, 40] propose to train registration prior mod-
els, leveraging learned deformation knowledge to improve
robustness and mitigate local minima. While effective, these
methods perform frame-wise registration rather than directly
operating on sequential data, leading to time-consuming pro-
cessing and issues such as error accumulation and temporal
inconsistency.

In this paper, we propose a novel framework, named ER-
Net, for efficient sequential non-rigid registration. Our core
innovation lies in a feed-forward network that predicts a
sequence of deformation graphs based on spatio-temporal
matching across point clouds. Specifically, instead of im-
plicitly predicting a set of 3D shape keypoints as the graph
nodes [12], we explicitly obtain a set of nodes from the
source object using the farthest point sampling algorithm,
considering its applicability for diverse 3D shapes. Then,
our approach leverages a coarse-to-fine strategy to regress
frame-wise node positions throughout the point cloud se-
quence, which first estimates coarse node positions in each
frame through spatial matching between source nodes and
point clouds, and then globally refines the node trajectories
across frames in a sliding-window manner. As shown in our
experiments, the use of deformation graphs enables efficient
feed-forward registration, while the two-stage strategy, tak-
ing into account the spatio-temporal relationship between
node positions, enhances robustness and consistency under
noisy and partial input.

A remaining problem is how to obtain the blending
weights and SE(3) transformations of the graph nodes to
drive the source object onto each frame. We find that naively
predicting these properties with a neural network suffers
from their non-linearity and high-dimensional characteris-
tics, resulting in sub-optimal performance. To overcome this
issue, our approach exploits the local rigidity of non-rigidly
deforming objects to infer these properties. During the re-
finement stage, we jointly predict the radii of nodes, which
can be easily inferred based on local geometric cues and
motion correlations. Then, using the radial basis function,
we define blending weights for each pair of source point and
deformation node. For the SE(3) transformation, we follow

Procrustes analysis and group a set of local nodes to calculate

their rotations and translations through the singular value

decomposition algorithm. Our experimental results demon-
strate that this strategy works well and produces high-quality
registration results.

We evaluate our approach on the DeformingTh-
ings4D [20] and D-FAUST [2] datasets, which are challeng-
ing benchmarks for estimating sequential non-rigid defor-
mation. Across these datasets, our method achieves state-of-
the-art performance in both accuracy and efficiency. Addi-
tionally, we demonstrate its robustness to sparse and partial
inputs, and conduct ablation studies to validate the effective-
ness of our proposed modules.

In summary, our contributions are:

* We propose an architecture for feed-forward sequential
non-rigid registration, incorporating a novel two-stage pre-
diction strategy for improved robustness and temporal
consistency.

* We propose to directly regress deformation graphs as an
efficient representation for non-rigid registration.

» We evaluate the proposed pipeline on several different de-
formation datasets, and demonstrate significant improve-
ments in both accuracy and speed compared to the state-
of-the-art.

2. Related Work

Representations of Deformation Field. Representations
of deformation field often involve the trade-off between its
expressiveness and the computational cost. Point-wise affine
transformation is one of the simplest ways to define the de-
formation field [1, 10, 22]. Although it is highly expressive
for modeling complex motion, its redundancy in degrees of
freedom often leads to expensive computational cost and
under-constrained problem. To mitigate this, deformation
graphs [35] are proposed to represent point-wise motion with
a set of graph nodes, each associated with an SE(3) trans-
formation. Individual deformation for each point can then
be calculated with weighted skinning. Since the number of
graph nodes is typically several orders of magnitude smaller
than the original point cloud, they can offer significant effi-
ciency improvement while reducing the solution space for
deformation optimization. Recently, with the success of im-
plicit neural fields [24, 25], some works [14, 21, 28] propose
to represent the deformation field as a continuous implicit
mapping from 3D coordinates to deformation vectors, often
implemented as a multilayer perceptron (MLP). Furthermore,
to reduce the high complexity of modeling deformations with
neural networks, [19] proposes to use several levels of MLPs
to hierarchically represent deformations with different lev-
els of details. However, such implicit representations are
often inefficient, requiring per-frame optimization which is
impractical for registering long sequences. In contrast, we
adopt deformation graphs as an explicit representation of



deformation, and propose to regress them with a neural net-
work in a feed-forward manner, striking a balance between
efficiency and expressiveness.

Non-rigid Registration. Non-rigid registration aims to
find point-wise deformation from the source to the tar-
get point cloud. Registration algorithms are typically de-
signed to accommodate specific deformation representations.
Non-rigid iterative closest point (NICP) [16] is a classic
optimization-based registration algorithm, and is commonly
used for solving either point-wise transformations or de-
formation graphs. In order to regularize the optimization
process and better preserve local topology details, As-Rigid-
As-Possible [11] constraint is proposed to regularize the
neighboring nodes to deform as rigidly as possible. How-
ever, they are still sensitive to initialization and often get
stuck in local minima. To further regularize the deformation
and incorporate temporal information, OccupancyFlow [27]
first proposes to model sequential deformation as a neural
velocity field and predicts deformation with an ordinary dif-
ferentiable equation (ODE) solver. Similarly, CaDeX [14]
employs implicit neural network by formulating the defor-
mation field as bijective mappings between each frame and a
shared canonical space. Nevertheless, both methods struggle
to capture high-frequency deformations effectively with im-
plicit networks. Another line of work [23, 31, 38] predicts
dense point correspondences, and estimates frame-wise de-
formations in a feed-forward manner. While these methods
achieve impressive accuracy, extending them for efficient se-
quential registration is non-trivial due to their limited ability
to aggregate temporal information. Moreover, their compu-
tational complexity scale poorly with the number of input
points, making them inefficient for large-scale inputs. In
this paper, we address these limitations by making efficient
feed-forward prediction of sparse deformation graphs, and
incorporating a coarse-to-fine strategy to fully utilize tempo-
ral information for robust and accurate registration.

Temporal Tracking. Recent advancements in Tracking
Any Points (TAP) algorithms [8, 9, 13, 39] have established
an effective framework for tracking arbitrary 2D points over
long video sequences. More specifically, CoTracker [13]
introduces a sliding-window approach with overlapping
segments, ensuring temporal consistency through a spatio-
temporal transformer. SpatialTracker [39] extends this con-
cept by lifting 2D image features using off-the-shelf depth
estimators and perform tracking in the 3D space. However,
these methods struggle to re-track occluded points over ex-
tended sequences due to limited window size. To address
this limitation, we propose a two-stage registration pipeline.
In the first stage, we employ a dedicated frame-wise match-
ing module for coarse yet robust initialization, effectively
handling occlusions and preventing error accumulation in

long sequences. In the second stage, we incorporate a 3D
temporal refinement module for sequential non-rigid regis-
tration, which predicts temporally consistent and accurate
trajectories for graph nodes while also estimating node radii
for weighted skinning.

3. Method

Given a dense source point cloud X € R™=*3 and a tempo-
ral sequence of sparse target points P = {P; € RNiX3|j =
1,-+-,T}, our goal is to design and train a feed-forward
model to predict a series of non-rigid deformation fields:

Wi (X, P) = X2 i=1,--- T, (1)

which register the source point cloud X to its correspond-
ing point cloud X; at each frame. In this paper, we focus
on developing an learning-based framework that can gen-
eralize to diverse object categories and shape deformations
while producing high-accuracy and temporally consistent
registrations throughout the point cloud sequence.

The overview of our approach is illustrated in Fig. 2. We
first encode the source point cloud X and target point cloud
sequence P with an efficient triplane encoder (Sec. 3.1).
Then we represent the non-rigid deformations as a sequence
of graph nodes. We initialize their per-frame positions with a
matching network, and apply a spatio-temporal transformer
to iteratively refine their trajectories and radii (Sec. 3.2). Fi-
nally, dense deformation fields are applied to X to complete
the sequential registration using radial basis blend skinning
(Sec. 3.3). To train our model, we introduce a two-stage train-
ing strategy that first pre-trains the matching module before
optimizing the remaining pipeline end-to-end (Sec. 3.4).

3.1. Efficient point cloud encoding

We encode point clouds using a triplane encoder, which
encodes arbitrary number of 3D points into three orthogo-
nal feature planes. With this design, per-point features are
compressed continuously into three planes, enabling fast
indexing and reducing memory consumption while preserv-
ing detailed geometry information. Both per-frame point
sequence P and source point cloud X are encoded using
the same encoder with shared weights. The overall point
cloud encoder £ is then formalized as:

Fays Fyzr For = E(X), X € {X }UP. 2)

Local feature encoder. To extract low-level geometry in-
formation, we utilize a modified shallow PointNet [29] with
local pooling layers instead of global pooling. More specif-
ically, each residual block is followed by a local pooling
operation, which we achieve by projecting per-point features
orthographically onto triplane grids and aggregating the av-
eraged results as local features. The aggregated features are
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(a) Point Cloud Encoding (b) Deformation Graph Prediction (c) Skinning-based Registration

Figure 2. Overview of our proposed pipeline. (a) Given a source point cloud and input target point cloud sequence, we first encode them
independently using a shared local feature encoder and splat per-point features onto triplane grids (Sec. 3.1). (b) Then we initialize graph
nodes based on source point cloud and perform the coarse-to-fine matching to predict the node positions and radii of the deformation graph
using encoded features (Sec. 3.2). (c) With the predicted node trajectories and radii, we calculate node transformations via the Procrustes

analysis and utilize the RBF-based LBS to produce dense registration (Sec. 3.3).

then concatenated with per-point features to form the inputs
for following residual blocks. This ensures that the encoded
feature contains semi-global information while maintaining
accuracy around local areas, which benefits accurate feature
matching.

Triplane feature maps. After embedding local feature
for every point, the geometry is still discrete and contains
spatial gaps. One naive solution would be to linearly inter-
polate between nearby points to form a continuous feature
field. However, this leads to inaccurate approximation of ge-
ometry features and introduces expensive nearest-neighbors
searching overhead. Similar to Xiao et al. [39], we project
per-point features onto triplane grids to enable fast indexing,
and apply a shallow U-Net [32] to fill gaps and complete
the geometry features. Compared to using 3D CNN, our ap-
proach of triplane factorization significantly reduces memory
consumption.

3.2. Deformation graph prediction

Deformation graph representation. Deformation graph
is an efficient and global representation for motion [35]. It
consists of a set of sparse graph nodes G = (V, R, T ), and
each graph node is associated with its positions V = {V,, €
R¥|p=1,--,B}LradiiR={R, e R|p=1,---,B}
and series of SE(3) transformations 7 = {7)|i =
1,---,T,p = 1,---, B} resulting the final deformation.
Here, we sample B points from the source point cloud as
positions of graph nodes using the farthest point sampling
algorithm.

Challenges for deformation graph prediction. For de-
formation graph estimation, one of the naive solution is to
extract the features of graph nodes at each time step, and
regress the graph nodes attributes directly. However, we
found that primitively regressing graph nodes via a neural
network is very challenging, especially the SE(3) transfor-
mations. Meanwhile, the temporal consistency is hard to be
ensured for the cases of large motions. To overcome this,
we firstly estimate the trajectories of graph nodes following
coarse-to-fine fashion. The trajectories are actually the linear
offsets which is easy for network prediction. The coarse-to-
fine strategy first coarsely match the graph nodes with each
frame and refine them with an iterative spatio-temporal trans-
former, which ensures the temporal and global consistency.
After that, we leverage the local rigidity to estimate SE(3)
transformations from the predicted trajectories by Procrutes
analysis.

Node-to-frame matching. Since X and P can be in ar-
bitrary poses with large motions, we find it necessary to
first initialize graph nodes positions for each frame by using
a node-to-frame matching network ¢. It takes the source
nodes V as well as their embedded triplane features F',
and produces a coarse registration for all given frames:

V; = ¢(V37Fsv (Fl

xy)

Fyer Faz))- 3)

More specifically, ¢ is a spatial transformer module, and its
input token in frame ¢ is defined as:

G' = (V(V;)>’7(Vi - V), F;ﬁ F,, C;;)7 4)

p



where 7y denotes sinusoidal positional encoding function, V;
and F; are node positions and features initialized with V,
and F, and C; denotes the correlations between node fea-
tures and triplane features near V;',. The transformer consists
of multiple self-attention blocks, and outputs residuals for
updating node positions and features. We apply the trans-
former for M = 6 times, and after the m-th iteration the
updated results are given by:

(VILED) = (VL EP D) +6(G™h. (5)

Here the sequence index ¢ is omitted for clarity.

Spatio-temporal refinement. After applying node-to-
frame matching, the initialized node positions are still inac-
curate and lack temporal consistency. To solve this issue, we
utilize a spatio-temporal transformer ® to refine 3D node tra-
jectories based on triplane geometry features. The T frames
are first partitioned into overlapping windows of the same
length T7,, where the second half of frame overlaps with the
first half in the following window. Temporal node graph
updates are carried out one window at a time, so that long
sequences can be handled in an online fashion. When updat-
ing node positions within a window W = [ig, 79 + T, ), the
transformer ®’s input token is defined as:

G = U T (1 (V).

i=1ig ’Y(V;_V;)O)vF;ﬂFst;)) }7 (6)
where notations are similar to those in Eq. 4 except that V;
is initialized using node-to-frame matching results, and V;,U
denotes node positions for the first frame in the window.
Similar to Eq. 5, the output from the transformer ® are
used to to update the node positions and features. Here we
perform trajectory updates within one window for M = 6
iterations and move on to the next window by initializing
its first L frames with the results of last L frames in the
previous w1ndow.

Transformation estimation. After recovering the tempo-
ral consistent nodes trajectories, our approach uses the pre-
dicted node trajectories to estimate transformations from
source object to a particular time step for each graph node.
We first find a set of source graph nodes that exhibits the local
rigidity, then find the corresponding graph nodes at the target
time step, and finally solve the transformations between two
sets of nodes via the Procrustes analysis process.
Specifically, for a source graph node v, our approach
first searches for its K-nearest nodes N' = {v¥|k =
1,---,K} in source graph nodes V; as the candidates,
and ﬁnds the trajectories for all K nodes {vF|i =
1,---, T,k = 1,--- ,K}. We assume that the nearest
neighbor node v! is always correctly assigned, and include

other graph nodes if they satisfy the following criteria:

k vO
HV O:I2_1|}<€vk:27"'aK}7
(7

where ¢ is initialized as 0.2. This is used to only include
nodes that stay relatively rigid w.r.t. v,. The resulting node
set is thus denoted as Ny = {v{} UN7.

To enhance the robustness of the Procrustes analysis, it
is important that the number of nodes within N7 is not less
than 4. Therefore, if the number of nodes obtained is less
than 4, we increment € by 0.1 and recalculate Eq. 7 to derive
a new set of nodes. Then, our approach regards these nodes
as one rigid part, and uses the estimated node trajectories to
produce corresponding graph nodes at the target time step.
Finally, the transformation from two sets of graph nodes are
calculated via the Procrustes analysis process. The detailed
calculations are provided in the supplemental material.

Ny = {vk | max{]

Node radius prediction. To convert the deformation graph
into a dense deformation field, the linear blend skinning
(LBS) algorithm [34] is applied here to construct the warping
function. However, direct estimate the blending weights is
non trivial due to its high dimensionality and non-linearity.
Therefore, we utilize an extra spatio-temporal transformer
® R to regress a radius R, for each node. Then the estimated
radii are used to calculate the blending weights with Radial
Base Functions (RBF), which is introduced in Sec. 3.3.

3.3. Skinning-based registration

Selective graph nodes assignment. Skinning is an indis-
pensable step for converting the estimated deformation graph
into the dense warping function, which is used to establish
correspondences between source and observed point clouds.
The key challenges here lie on correct nodes assignment for
each source point. The incorrect neighbours selection will
lead to the wrong skinned deformation when the topology
changes occur.

To increase the robustness to close-to-open topology
changes, we propose to assign graph nodes to each point
by considering the local rigidity. For each point x in source
point cloud X, we firstly search for its K7, ,,-nearest nodes
in source graph nodes V as the candidates, and obtain cor-
responding nodes based on the estimated node trajectories.
Then, these nodes are filtered based on a process similar to
Eq. 7. Here € is set as 0.2. This metric effectively filter those
graph nodes with substantial relative position shifts, which
always indicates for the close-open topology change.

Radial basis skinning. After knowing the graph node
neighbors for each source point, the deformation for each
point can be calculated with the LBS algorithm. In order to
simplify the blending process and ensure the training stable,



Table 1. Quantitative results on the test subsets of DT4D-H and D-FAUST datasets. Note that, our approach is only trained on D-FAUST
and DT4D-A datasets and can generalize to DT4D-H dataset. Green and yellow cell colors indicate the best and the second best results,

respectively.
Method DT4D-H D-FAUST
ATE3p | doo1 T 9005 T Tavgd ATE3pl do01 T 9005 T Tavg d
C-NICP [16] 0.107 0.038 0.167 1.569 0.108 0.022 0.188 1.445
C-NSFP [17] 0.070 0.062 0.418 2.040 0.050 0.056 0.437 1.570
C-NDP [19] 0.058 0.192 0.603 0.832 0.041 0.057 0.522 0.808
ERNet (ours) 0.037 0.238 0.678 0.188 0.016 0.313 0.863 0.178

we select the radial basis function (RBF) to calculate the
blended weights for skinning. Specifically, for a point x,
we calculate the blending weight of its assigned node v4(x;)
with respect to frame ¢ using:

(7||Xs _VS(XS)”%). 8)

W; = exp
’ 2r;(x,)?

where r;(x;) is the node radius estimated in Sec. 3.2. To
deform the point x, from the source object to the posi-
tion x; at frame 4, our approach first finds its assigned
graph nodes {v¥(x,)} and corresponding transformations
{T¥(vs)}, and then performs the LBS algorithm:

K kTk
N Wi (vs)
- Kk )

YW

i

i ©))
where K’ is the number of graph nodes assigned to point
Xs. This is performed for every point in X, across all

frames, forming the final sequential registrations {X, i =
1,--,T}

3.4. Training

Our model parameters include triplane geometry encoder
&, node-to-frame matching network ¢ and spatio-temporal
transformers ®r and ®. To optimize them, we design an
efficient and stable two-stage training strategy.

We first start with training £ and ¢ from scratch on point
cloud pairs, where P only contains one target point cloud.
The optimization is regularized using node position regres-
sion loss:

£7natch - E%:lajw—mnvgl - Vp”la (10)

where \A/'gl denotes the predicted node position at m-th it-
eration, and V, denotes the ground-truth position. We set
«a = 0.8 to guide the matching network to gradually update
nodes from source position towards target position.

After the encoder £ and matching network ¢ converges,
we freeze their weights to go on and optimize transformers ®
and ® . This enables us to train them on larger windows and

longer sequences with wider temporal context. We give the
same supervision on the predictions of each sliding window.
So, to avoid the complicated notations, we introduce the
total loss on arbitrary sliding window T ,,. The total loss is
a combination of registration loss, node regression loss and
local rigidity constraint:

Liotal = E%:1aM_m(»C:gg+)\node£n7?)de+)\rigid£g?gid)a (11)

where Apoge and Asgig are weight coefficients, which in prac-
tice is set to 1.0 and 0.1, respectively. The losses are summed
for every frame in every iteration across all windows. We
present the details of these losses in the supplementary mate-
rial.

4. Experiments

4.1. Implementation details

Our model is trained from scratch with two 48GB A6000
GPUs. The first stage training takes 200k iterations (7 days)
to converge, while the second stage is trained for another
300k iterations. For triplane feature encoding, we utilize
five consecutive encoding-splatting blocks and set the plane
resolution to be 256 x 256 with 128 feature channels. For
node graph estimation, we set B = 256 and find it to be
the balance between modeling complex deformations and
computational efficiency, which is shown in our ablation
study 4.4. In the second training stage, we set the window
size T, to 8 and the total training frames to be 12. Both
node-to-frame transformer ¢ and sequential transformer ¢
have a layer depth of 12, while the depth of node radius
regressor P is set to 6 for efficiency. When performing
blend skinning for source points, we choose K = 4 to
allow smooth transformation while maintaining accuracy by
enforcing spatial locality.

4.2. Datasets and metrics

To showcase the generalizability and accuracy of our de-
sign, we train one single model on two challenging defor-
mation datasets: DeformingThings4D [20] and Dynamic
FAUST [2].
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Figure 3. Qualitative results on two challenging examples from the depth-sampled D-FAUST and DT4D-A datasets. The point color
reflects the L2 distance from ground truth, where blue indicates less error and red indicates more.

DeformingThings4D. It is a synthetic dataset consisted
of 1772 animal deformation sequences (DT4D-A) and 200
human deformation sequences (DT4D-H). It is especially
challenging thanks to its wide variety of complex shapes
and inclusion of highly-deformed sequences. Following
CaDeX [14], we filter out the sequences where meshes con-
tain ill-behaved areas and partition a subset of the DT4D-
A dataset into training (75%), validation (7.5%) and test
(17.5%) subsets. We do not include the DT4D-H dataset for
training and sample test subset for evaluation of generaliz-
ability.

Dynamic FAUST (D-FAUST). It is a human motion
dataset consisting of 10 subjects and 129 deformation se-
quences. It contains challenging large deformations, e.g.,
"running on spot" and "punching". To produce partial point
clouds, we render depth images through a randomly posed
camera per sequence and back-projecting them into 3D space.
We follow [27] and partition it into training (70%), validation
(10%), and test (20%) subsets.

Metrics. To evaluate sequential registration accuracy, we
calculate the average trajectory error AT E3p for each scene,
which is the average 11 distance between the predicted regis-
tration targets and ground truths. In addition, we compute
d0.01 and dp o5 to evaluate the stability of registration accu-
racy, where &y 91 denotes the fraction of predicted points that
are within 0.01 unit length from ground truths, with dg o5
using a relaxed threshold at 0.05 unit length. To evaluate
method efficiency, we provide average registration time per
frame T}, 4 in second for every method.

4.3. Sequential non-rigid registration

Since there are no existing works that can be directly used
for sequential registration, we construct three baselines using
pair-wise non-rigid registration methods, namely NDP [19],
NICP [16] and NSFP [17]. To perform registration, we first
utilize these methods to predict the deformation from source
point cloud to the first frame, and then chaining the registra-
tions by iteratively predicting deformations based on the last
predicted registration. We refer to these baselines as chained
NDP (C-NDP), chained NICP (C-NICP) and chained NSFP
(C-NSFP) respectively. We evaluate our method as well as
the constructed baselines using the test sets of DT4D-H and
D-FAUST.

The results are shown in Tab. 1. Our method outperforms
all baselines by a large margin both in accuracy and effi-
ciency, even though all baselines are optimized per sequence
while we utilize one single model across all data. This is
especially surprising since we do not utilize the DT4D-H
dataset for training. The results demonstrate that our model
is highly generalizable and scalable thanks to our trajectory
representation of node graphs. We show qualitative results
comparing our method with baseline methods in Fig. 3

4.4. Ablation study and analysis

Effectiveness of node graph. We show the effectiveness
of our blending skinning approach by constructing a pipeline
where we use our network to predict the temporal trajectory
across observed point clouds for any point on the source
object, which is named “Dense matching”. Since the mem-
ory consumption grows exponentially with node number,
we iteratively pass all source points through the node graph
predictor and aggregate the results. The results on D-FAUST
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Figure 4. Analysis on the effect of update iteration and node count. Metrics AT F3p, 60.01 and dg.05 W.r.t. transformer update iterations
and node counts are presented. We update trajectories 6 times and set node count B = 256 as a balance between performance and efficiency.

Table 2. Ablation studies. The results are evaluated on the D-
FAUST test set. Average trajectory error AT E3p, inlier propor-
tions .01 and do.o5 are reported. The average registration time
per frame T4, 4 is reported for "Ours" and "Dense matching" for
efficiency comparison.

Method ATE3p |l 6001 T do05T Tavgd
Ours 0.011 0416 0918 0.172
Dense matching 0.014 0.299 0.885  4.645
Ours w/o ¢ 0.022 0289 0.845  0.060
Ours w/o ® 0.014 0.366  0.889  0.169

[2] dataset in Tab. 2 show our skinning approach not only sig-
nificantly improves registration efficiency but also achieves
higher accuracy compared with “Dense matching”.

Effectiveness of coarse-to-fine scheme. One of our major
insights is that performing sequential non-rigid registration
with coarse-to-fine scheme allows higher accuracy and better
generalizability. To prove the effectiveness of our design, we
construct two variants of our method by removing the node-
to-frame matching network ¢ and sequential node regression
network ® respectively. As is shown in Tab. 2, both variants
show a significant drop in performance.

Analysis on update iteration. For our baseline method,
we perform iterative updates with sequential transformer for
M = 6 iterations. As comparison, we plot the evaluation
results using different update iterations in Fig. 4. The results
show that our model trained with M/ = 6 performs best at
M = 6, but can be inferenced at M = 4 for better efficiency
with minor performance drop.

Analysis on node amount. Node amount significantly
affects registration accuracy, since more nodes are capable of
modeling more complex motion with more detail. However,
prediction large amount of graph nodes is computationally
expensive. We show the evaluation results for different node
amount in Fig. 4, which shows our choice of B = 256
nodes is the best balance between registration accuracy and
efficiency.

5. Conclusions

In this work, we performs efficient sequential non-rigid
registration by representing temporal correspondences as
deformation graphs. We designed a coarse-to-fine match-
ing pipeline to estimate node trajectories of deformation
graphs with strong generalization ability. Based on the pre-
dicted node positions and radii, we additionally proposed an
RBF-based LBS technique for deforming the source object
to target point clouds. Experiments demonstrate that our
method outperforms existing methods both in accuracy and
efficiency across public datasets.

Limitations. Although our method displays great gener-
alizability, it is trained on limited data due to the lack of
annotated 4D correspondences, and could benefit from being
trained on a larger variety of objects and motions. Its further
applications in other areas, such as dynamic scene editing,
compression, autonomous driving and robotics, are still yet
to be explored.
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